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Math Methods in Transistor Modeling:
Condition Numbers for
Parameter Extraction

Firman D. King, Peter Winson, Arthur D. Snider,
Lawrence Dunleavy, and Deborah P. Levinson

Abstract—Condition numbers expressing the sensitivity of computed
circuit element values to inaccuracies inS-parameter measurements are
derived and evaluated for a standard small-signal MESFET model. The
condition numbers shed light on the common difficulty experienced by
transistor modelers in extracting accurate values for the input resistance.
Other elements are also classified according to their sensitivity.

Index Terms—Circuit modeling, MESFET’s, parameter estimation.

I. MATHEMATICAL BACKGROUND

In the theory of computationcondition numbersare dimensionless
numbers expressing upper bounds for the relative error in the solution
of a set of equations in terms of the relative accuracy of the data.
A classical result is that errors in the solution to the matrix equation
Ax = b are induced by errors in the data in accordance with

k�xk=kxk � kAkkA�1kk�bk=kbk

(matrix norms:kAk = max kAxk=kxk) [1]. Thus, the condition
number for the problemAx = b is kAkkA�1k. Recent extensions
of the theory have resulted in partitioned condition numbers and
componentwise condition numbers, which help to distinguish the
poorly determined components of the solution from the others [2],
[3].

For a nonlinear set of equationsx = f(y), the influence of a
relative error�yj=yj in a data component on a solution component
xi would be measured by the ratio

j�xi=xij=j�yj=yj j � j@xi=@yj j � jyj=xij � �ij : (1)

A 1% error in the componentyj would produce approximately a
�ij% error in xi.

The accuracy of this approximation is limited by two considera-
tions. First, it represents a linearization, which, of course, will have
a limited range of validity. Additionally, the condition number or
sensitivity�ij as calculated will depend on the datay from which
x is calculated and at which the partial derivativesj@xi=@yj j are
evaluated. Thus, even the sensitivity has a sensitivity, and may be
inaccurate due to errors in the data. Nevertheless, a large sensitivity
calculated for a derived valuexi on a measurementyj is usually taken
as an indication that an accurate valuexi can be determined only with
a very precise measurement ofyj , since either the sensitivity is indeed
high or the errors, bad enough to render the sensitivity calculation
unreliable, are likely to have resulted in an erroneousxi.
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Fig. 1. Small-signal model of the MESFET.

II. PARAMETER EXTRACTION FOR MESFET MODELS

Fig. 1 shows a standard small-signal model of a MESFET. The
values of the circuit elements therein have traditionally been evaluated
by measuring the scattering parameters (“S-parameters”) and curve
fitting. More recently, Berroth and Bosch have shown that the
circuit elements can be computed explicitly from the admittance
parameters (“Y -parameters”), whose (explicit) expressions in terms
of the S-parameters are well known [4], [5]. Thus, we can derive
formulas for the condition numbers of each of the circuit elements.
The labor of this calculation is considerably reduced by utilization
of MAPLE software.

The numbers which are directly measured in anS-parameter de-
termination are the amplitudesjSij j and phases6 Sij . The measuring
device—the vector analyzer—may have the facility of reportingS
values in either Cartesian (real/imaginary) or polar form, but only the
latter are measured directly. Thus, the partials in the condition-number
formulas (1) should be taken with respect to the polar variables. For
example, for the input resistance, we have

�R ; jS j =
@Ri

@jS12j
�

jS12j

Ri

(2)

and

�R ; 6 S =
@Ri

@ 6 S12
�

6 S12
Ri

: (3)

Although the relationships between the polar-formS-parameters
and the Cartesian-formS-parameters, between the Cartesian-form
S-parameters and theY -parameters, and between theY -parameters
and the circuit model parameters are all complicated and nonlinear, by
using MAPLE software’s symbolic mathematics capability, we were
able to explicitly calculate symbolic expressions for all 64 partial
derivatives and all 64 sensitivities in terms of the measurement data.
Actual data from typical measurements were then inserted into these
expressions and the sensitivities were evaluated.

Since explicit symbolic expressions were used, no recourse to
the chain rule or to any numerical method was necessary. These
expressions proved to be extremely complicated, covering many
pages of computer printout. The effort to determine or utilize them
would have been prohibitive without the symbolic mathematics
software.
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TABLE I
CIRCUIT PARAMETER SENSITIVITIES FOR TYPICAL DATA

III. RESULTS AND DISCUSSION

The sensitivities corresponding to a typical set of data are shown
in Table I. For the devices tested at the WAMI Laboratory, Uni-
versity of South Florida, Tampa, for instance, workers have long
recognized the input resistanceRi as a notoriously unstable parameter
when determined numerically fromS-parameter measurements. Our
analysis pinpoints the difficulty. Table I shows a 97.80 sensitivity of
Ri with respect tojS11j (for our device). Subject to the limitations
and approximations described above, this would predict that a 1%
error in the parameterjS11j causes an error of 98% in the element
Ri. Since our equipment (a Hewlett-Packard HP8510B Network
Analyzer) typically exhibits errors in the range of 3%–5% in this
parameter under the test conditions,1

Ri clearly cannot be determined
accurately fromS-parameter data.

The least reliably determined circuit element is the time-delay� ,
for which our calculations show enormous sensitivities to bothjS11j
and 6 S21. The parameterjS11j, as stated above, is subject to 3%–5%
measurement errors. The angle6 S21 for this data is approximately
167�, and phase measurement errors typically run around 5�,1 or
around 3%. (Indeed, phase errors are usually absolute, not relative
quantities; one may wish to omit the normalizations in the phase
factors for the phase condition numbers (3).) Thus, any determination
of � is completely swamped by its uncertainty. The difficulty in
establishing accurate values for the time delay fromS-parameter
measurements is well known, and frequently� is simply omitted
from the model.

Condition-number analysis highlights the numerically unstable
elements in the model, with respect to a specific experimental
determination (i.e., viaS-parameters). It identifies which particu-
lar S-parameters limit the accuracy of the results, and it tells us
how accurately these must be measured in order to derive reliable
circuit element values. These sensitivities are due to ill condition-
ing of the mathematical equations relating the circuit elements to
the S-parameters. They are inherent in the model-plus-extraction
procedure itself and are, therefore, algorithm independent.

However, they do not imply that the model is unverifiable. Al-
ternative experimental procedures could conceivably finesse these
high sensitivities. For instance, we found that the sensitivities of
this model’s elements with respect to theY -parameters were fairly
benign (thus, the villain in the piece was the ill conditioning of the
Y -parameters with respect to theS-parameters). IfY -parameters
could be measured directly, one could model nonlinear transistors
much more accurately.

1Hewlett-Packard Company,System Manual HP8510B Network Analyzer,
P/N 08510-90074, Santa Rosa, CA, July 1987.
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New Tunable Phase Shifters Using
Perturbed Dielectric Image Lines

Ming-yi Li and Kai Chang

Abstract—This paper presents new tunable phase shifters using per-
turbed dielectric image lines (DIL’s). The propagation constant in the
DIL was perturbed by a movable metal reflector plate installed in parallel
with the ground plane of the DIL. The phase shift was thus controlled
and adjusted by varying the perturbation spacing between the DIL and
movable reflector plate at a given operating frequency. A rigorous hybrid-
mode analysis was used for calculating the dispersion of propagation
constants in the perturbed DIL, and then for designing tunable phase
shifters. Ka-band tunable phase shifters have been designed, fabricated,
and tested. Measurement results agree well with theoretical predictions.
The device is especially useful for millimeter-wave applications where
traditional phase shifters are lossy.

Index Terms—Dielectric image lines, millimeter waves, tunable phase
shifters.

I. INTRODUCTION

Dielectric image lines (DIL’s) have reduced losses compared to
microstrip lines at millimeter-wave frequencies since most of the
signal travels in the low-loss dielectric region [1]. This structure
was recently proposed for feeding the aperture-coupled microstrip-
patch antenna arrays [2]–[4], and overcomes the high conduction
loss problem of microstrip lines at millimeter-wave frequencies. A
phase shifter is one of the important control circuits used extensively
at microwave and millimeter-wave frequencies. Traditional phase
shifters use solid-state or ferrite devices. In this paper, new tunable
phase shifters using DIL’s are described. The DIL can be transformed
to rectangular waveguide or microstrip line using transitions.

In a DIL, the electromagnetic (EM) signal travels mainly inside
the dielectric and can be perturbed in several ways. The changing
of propagation constants of an EM field in the DIL can be applied
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